Formation Mechanisms of Combustion Chamber Deposits
نویسندگان
چکیده
Combustion chamber deposits are found in virtually all internal combustion engines after a few hundred hours of operation. Deposits form on cylinder, piston, and head surfaces that are in contact with fuel-air mixture during the engine cycle. The effects of deposits include increased engine-out NOx emissions, octane requirement increase, and changes in flame speed and thermal efficiency. A framework is developed for examining the physical and chemical processes that contribute to the formation of combustion chamber deposits. First, a hypothesis for the general mechanism of deposit formation is developed from a review of previous work on this issue. The key features of this mechanism are formation of deposit precursor species from fuel and air as the flame quenches at the engine wall, diffusive and convective transport of these species to the wall, and condensation or adsorption at the wall surface. The experimental system and methodology developed in this work are meant to provide insight into the interactions between these processes, and in particular to study the chemical mechanisms that contribute to the formation of deposit precursor species. A cooled low pressure flat flame burner is used to produce steady-state propane-air flames doped with toluene, a known deposit forming species. Profiles of concentrations and temperature are measured using infrared spectroscopy and gas chromatography techniques. In conjunction with the experiments, a one-dimensional numerical model is developed, capable of simulating flame quenching with deposition over a range of conditions extending from the low pressure, steady state burner experiments to high pressure, rapid transient engine conditions, using chemical mechanisms of precursor formation that may be determined experimentally. Modeling of deposition with simplified chemical mechanisms reveals that deposition by condensation can reproduce trends observed in experiments by other researchers; however, adsorption could still be a contributing factor. Experimental observations of toluene-doped flames show the formation of oxygenated compounds such as benzaldehyde and benzofuran, which are likely deposit precursor candidates. The methodology developed in this thesis shows promise for determining deposit precursor identities and formation mechanisms for important fuel components, and for clarifying the role of gas-phase processes in the formation of combustion chamber deposits. Thesis Supervisor: Simone Hochgreb Title: Lecturer, Department of Mechanical Engineering
منابع مشابه
A Computational Study of the Effects of Combustion Chamber Geometries on Combustion Process and Emission in a DI Diesel Engine
A computational study aiming to investigate the effect of combustion chamber geometry on combustion process and emission has been carried out in a direct injection diesel engine. The combustion process and emission of three different combustion chamber geometries were considered, and combustion process behaviors such as variation of mean pressure, velocity, heat release rate, emission productio...
متن کاملThree Dimensional Modeling of Combustion Process and Emissions Formationin Pre and Main Chambers of an Idirect Injection Diesel Enginge
The combustion processes and emission formation in pre and main chambers of a Lister 8.1 IDI diesel are simulated with the Computational Fluid Dynamics (CFD) code. The model includes spray atomization, mixture formation and distribution and subsequently the combustion processes and emissions formation modeling are carried out with considering of flow configurations in two chambers. A part load ...
متن کاملبررسی تجربی تأثیـر رقیقسازی سوخت با رقیقکننده CO2 بر تشکیل آلایندهها در شعله غیرپیشآمیخته پروپان ـ هوا
Control of nitric oxides (NOx) is one of the key elements in designing combustion systems because of the important role on ozone layer destruction and smog formation. Because of the sensitivity of thermal NO mechanism to temperature, a practical and scientific method for thermal NO reduction is decreasing the flame temperature. Dilution is one way to reduce maximum temperature in the combustion...
متن کاملExperimental study of the diesel injector nozzle sediment effect on fuel spray behavior
High pressure amount of fuel in new generation diesel engines’ injector equipped with multiple and small nozzle holes has created significant improvement in the outgoing spray behavior and engine performance. On the other hand, poor fuel quality and injector nozzle embedded in high temperature combustion chamber form fundamental deposits on the nozzle leading to fuel spray inappropriate behavio...
متن کاملModeling of Heat Losses Within Combustion Chamber of Diesel Engines
The cylinder working fluid mean temperature, rate of heat fluxes to combustion chamber and temperature distribution on combustion chamber surface will be calculated in this research. By simulating thermodynamic cycle of engine, temperature distribution of combustion chamber will be calculated by the Crank-Nicolson method. An implicit finite difference method was used in this code. Special treat...
متن کامل